Effects of vinblastine, podophyllotoxin and nocodazole on mitotic spindles. Implications for the role of microtubule dynamics in mitosis.
نویسندگان
چکیده
Inhibition of mitosis by many drugs that bind to tubulin has been attributed to depolymerization of microtubules. However, we found previously that low concentrations of vinblastine and vincristine blocked mitosis in HeLa cells with little or no depolymerization of spindle microtubules, and spindles appeared morphologically normal or nearly normal. In the present study, we characterized the effects of vinblastine, podophyllotoxin and nocodazole over broad concentration ranges on mitotic spindle organization in HeLa cells. These three drugs are known to affect the dynamics of microtubule polymerization in vitro and to depolymerize microtubules in cells. We wanted to probe further whether mitotic inhibition by these drugs is brought about by a more subtle effect on the microtubules than net microtubule depolymerization. We compared the effects of vinblastine, podophyllotoxin and nocodazole on the organization of spindle microtubules, chromosomes and centrosomes, and on the total mass of microtubules. Spindle organization was examined by immunofluorescence microscopy, and microtubule polymer mass was assayed on isolated cytoskeletons by a quantitative enzyme-linked immunoadsorbence assay for tubulin. As the drug concentration was increased, the organization of mitotic spindles changed in the same way with all three drugs. The changes were associated with mitotic arrest, but were not necessarily accompanied by net microtubule depolymerization. With podophyllotoxin, mitotic arrest was accompanied by microtubule depolymerization. In contrast, with vinblastine and nocodazole, mitotic arrest occurred in the presence of a full complement of spindle microtubules. All three drugs induced a nearly identical rearrangement of spindle microtubules, an increasingly aberrant organization of metaphase chromosomes, and fragmentation of centrosomes. The data suggest that these anti-mitotic drugs block mitosis primarily by inhibiting the dynamics of spindle microtubules rather than by simply depolymerizing the microtubules.
منابع مشابه
Mitotic Block of Human Blood Cells by Vinca herbacea, Catharanthus roseus and Colchicine Alkaloids
Catharanthus roseus (L.) G.Don is a plant which produces anticancer and anti-mitotic indole alkaloids. Colchicine is an anti-mitotic drug. Anti-mitotic effects of Vinca herbacea Waldst. & Kit. indole alkaloids is unknown. The study were evaluated the antimitotic effect of alkaloids of V. herbacea, Catharanthus roseus andcolchicineon mitosis and microtubule arrangement of human blood cells. In t...
متن کاملDifferential mitotic responses to microtubule-stabilizing and -destabilizing drugs.
Although microtubule interacting agents inhibit spindle dynamics, thereby leading to a block in mitosis, we report that low concentrations of these drugs result in differential mitotic effects. Microtubule-stabilizing agents including Taxol, epothilone B, and discodermolide produce aneuploid populations of A549 cells in the absence of a mitotic block. Such aneuploid populations are diminished i...
متن کاملMicrotubules do not promote mitotic slippage when the spindle assembly checkpoint cannot be satisfied
When the spindle assembly checkpoint (SAC) cannot be satisfied, cells exit mitosis via mitotic slippage. In microtubule (MT) poisons, slippage requires cyclin B proteolysis, and it appears to be accelerated in drug concentrations that allow some MT assembly. To determine if MTs accelerate slippage, we followed mitosis in human RPE-1 cells exposed to various spindle poisons. At 37 degrees C, the...
متن کاملMicrotubule Functions during Anaphase and Telephase Interference with Spindle Formation without Affecting Other
Very low concentrations of paclitaxel, a clinically active anticancer agent isolated from the bark of the Pacific yew tree, were found to produce micronuclei in human colon carcinoma cells, suggesting inhibition of mitotic spindle assembly or function. The possibility that paclitaxel acts at the level of the mitotic spindle was investigated by evaluating its ability to inhibit the progression o...
متن کاملThe distribution of cytoplasmic microtubules throughout the cell cycle of the centric diatom Stephanopyxis turris: their role in nuclear migration and positioning the mitotic spindle during cytokinesis
The cell cycle of the marine centric diatom Stephanopyxis turris consists of a series of spatially and temporally well-ordered events. We have used immunofluorescence microscopy to examine the role of cytoplasmic microtubules in these events. At interphase, microtubules radiate out from the microtubule-organizing center, forming a network around the nucleus and extending much of the length and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cell science
دوره 102 ( Pt 3) شماره
صفحات -
تاریخ انتشار 1992